

A Novel Attribute-based Symmetric Multiple Instance Learning for Histopathological Image Analysis

Trung Vu¹, Phung Lai¹, Raviv Raich¹, Anh Pham¹, Xiaoli Z. Fern¹, UK Arvind Rao²

¹ - School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, OR 97331-5501

² - Department of Computational Medicine and Bioinformatics, and Department of Radiation Oncology, The University of Michigan, Ann Arbor, MI 48109

Outline

- Introduction
- Problem Formulation
- Proposed Model
- Experiments

Histopathological Image Classification (HIC)

Normal

Inflammation

Automatic HIC

- *Traditional approach* relies on pathologists who are capable of identifying problem-specific cues in a whole slide image (WSI)
 - shape, color, size of cells
 - spatial structure of cells
 - presence of isolated clusters
- Computer-assisted diagnosis has become widely-used in recent years
 - reduce variability in human interpretations
 - eliminate significant effort from experts on trivial cases
 - provide quantitative analysis of a specific disease

Related Work

- Fully supervised learning
 - training labels are required for not just the WSI but all of its patches
 - common classification methods can be applied in HIC
 - feature extraction techniques (texture, spatial, graphbased, morphological, ...)
 - supervised training algorithms (SVMs, CNNs, ...)
 - DFDL [1] takes steps forward
 - uses dictionary learning to automatically extract features

\rightarrow labelling patches is challenging

- each WSI comprises hundreds to thousands patches
- need expert knowledge

* Figure from T. H. Vu, H. S. Mousavi, V. Monga, G. Rao, and U. A. Rao "*Histopathological image classification using discriminative featureoriented dictionary learning,*" IEEE Trans. Med. Imag., vol. 35, no. 3, pp. 738–751, 2016.

- Weakly supervised learning
 - coarse-grain annotations
 - only the bag-level labels are required
 - common methods in multiple instance learning (MIL) can be applied in HIC
 - WSI \rightarrow bag, patch \rightarrow instance
 - EM-DD, MI Kernel, mi-SVM, miGraph
 - MCIL [2] is the state-of-the-art method designed for HIC
 - adopts the clustering concept into MIL
 - all are based on asymmetric assumption
 - not suited for cancer type classification

Asymmetric assumption

* **Figure from** E.D. Ross and A. Ben-Hur. *"Amino acid composition predicts prion activity"*. PLoS computational biology, 13(4), p.e1005465, 2017.

Our contribution

- A novel symmetric MIL framework for classifying cancer types based on histopathological images.
- A probabilistic graphical model that incorporates the proposed paradigm and an efficient inference for learning model parameters.
- Extensive experiment results:
 - runtime evaluation,
 - real-world datasets.

Problem Formulation

- Given bags and their labels $\{X_b, Y_b\}_{b=1}^B$
 - $X_b = \{x_{bi}\}_{i=1}^{n_b} \subset \mathbb{R}^d$
 - $Y_b \in \{0,1\}$

- Symmetric MIL assumptions:
 - Symmetric attributes: each instance in a bag can be associated with an attribute that is either *relevant* or *irrelevant* to the bag label.
 - No mixed-class attributes: positive bags do not contain negative attributes and vice versa.
 - Cardinality constraint: each bag has a limited number of relevant instances.

Attribute-Based Symmetric MIL

• Attribute z_{bi} of *i*th instance in *b*th bag follows a multinomial LR

$$P_{bic}(\boldsymbol{w}) = P(z_{bi} = c \mid \boldsymbol{x}_{bi}, \boldsymbol{w}) = \frac{e^{\boldsymbol{w}_c^{\mathsf{T}} \boldsymbol{x}_{bi}}}{\sum_{c=0}^{\mathbb{C}} e^{\boldsymbol{w}_c^{\mathsf{T}} \boldsymbol{x}_{bi}}}$$

 Cardinality constraint is enforced on every bag

$$T_b = \left(I_{\sum_{i=1}^{n_b} I_{z_{bi} \neq 0} \ge 1} \right) \left(I_{\sum_{i=1}^{n_b} I_{z_{bi} \neq 0} \le n_{\max}} \right) = 1$$

• Bag label is computed based on the presence of relevant attributes

$$Y_{b} = \begin{cases} 0 & \text{if } \bigcup_{i=1}^{n_{b}} \{z_{bi}\} \subseteq \{0, 1, \dots, \frac{\mathbb{C}}{2}\} \\ 1 & \text{if } \bigcup_{i=1}^{n_{b}} \{z_{bi}\} \subseteq \{0, \frac{\mathbb{C}}{2} + 1, \dots, \mathbb{C}\} \\ 2 & \text{otherwise} \end{cases}$$

Positive attributes $C^+ = \{1, \dots, \frac{\mathbb{C}}{2}\}$ Negative attributes $C^{-} = \{\frac{\mathbb{C}}{2} + 1, \dots, \mathbb{C}\}$

Inference

Regularized maximum likelihood

• <u>Challenge</u>: minimizing \mathbb{L} w.r.t. w requires computing $P(Y_b, T_b \mid X_b, w)$

$$P(Y_b = 1, T_b \mid \boldsymbol{X}_b, \boldsymbol{w}) = \sum_{\boldsymbol{z}_b \in \{0, 1, \dots, \frac{\mathbb{C}}{2}\}^{n_b}} I_{\sum_{i=1}^{n_b} I_{z_{bi} \neq 0} \ge 1} I_{\sum_{i=1}^{n_b} I_{z_{bi} \neq 0} \le n_{\max}} \prod_{i=1}^{n_b} P(z_{bi} \mid \boldsymbol{x}_{bi}, \boldsymbol{w})$$

Expectation Maximization (EM) Approach

Negative complete log-likelihood

$$\mathbb{L}_{cm}(\boldsymbol{w}) = -\frac{1}{B} \sum_{b=1}^{B} \log P(Y_b, T_b, \boldsymbol{z}_b \mid \boldsymbol{X}_b, \boldsymbol{w}) + const$$

$$\mathbb{Q}(\boldsymbol{w}, \boldsymbol{w}^{(k)}) = \frac{1}{B} \sum_{b=1}^{B} \left(\mathbb{J}_{b}(\boldsymbol{w}, \boldsymbol{w}^{(k)}) + \lambda_{e} \mathbb{H}_{b}(\boldsymbol{w}) + \frac{\lambda_{q} \|\boldsymbol{w}\|^{2}}{2} \right)$$

$$\mathbb{J}_{b}(\boldsymbol{w}, \boldsymbol{w}^{(k)}) = E_{\boldsymbol{z}_{b}|Y_{b}, T_{b}, \boldsymbol{X}_{b}, \boldsymbol{w}^{(k)}} \left[-\log P(Y_{b}, T_{b}, \boldsymbol{z}_{b} \mid \boldsymbol{X}_{b}, \boldsymbol{w}) \right]$$

• M-step: $w^{(k+1)} = \underset{w}{\operatorname{argmin}} \mathbb{Q}(w, w^{(k)}) \xrightarrow{\text{Generalized EM}} \operatorname{find} w^{(k+1)} \operatorname{s.t.} \mathbb{Q}(w^{(k+1)}, w^{(k)}) \leq \mathbb{Q}(w^{(k)}, w^{(k)})$

 $\mathbb{Q}(oldsymbol{w},oldsymbol{w}^{(k)})$

 $\boldsymbol{w}^{(k+1)} \boldsymbol{w}^{(k)}$

 $\mathbb{L}(oldsymbol{w})$

E-step

$$\int_{c=0}^{\mathbb{C}} I_{z_{bi}=c} \boldsymbol{w}_{c}^{T} \boldsymbol{x}_{bi} + \log\left(\sum_{c=0}^{\mathbb{C}} e^{\boldsymbol{w}_{c}^{T} \boldsymbol{x}_{bi}}\right)$$

$$\int_{b}(\boldsymbol{w}, \boldsymbol{w}^{(k)}) = E_{\boldsymbol{z}_{b}|Y_{b}, T_{b}, \boldsymbol{X}_{b}, \boldsymbol{w}^{(k)}} \left[-\log P(Y_{b}, T_{b}, \boldsymbol{z}_{b} \mid \boldsymbol{X}_{b}, \boldsymbol{w}) \right]$$

$$= \sum_{i=1}^{n_{b}} \left(-\sum_{c=0}^{\mathbb{C}} P_{bic}^{post}(\boldsymbol{w}^{(k)}) \cdot \boldsymbol{w}_{c}^{T} \boldsymbol{x}_{bi} + \log\left(\sum_{c=0}^{\mathbb{C}} e^{\boldsymbol{w}_{c}^{T} \boldsymbol{x}_{bi}}\right)\right)$$

$$P_{bic}^{post}(\boldsymbol{w}) = P(z_{bi} = c \mid Y_{b}, T_{b}, \boldsymbol{x}_{bi}, \boldsymbol{w})$$

$$= \frac{P(z_{bi} = c, Y_{b}, T_{b} \mid \boldsymbol{x}_{bi}, \boldsymbol{w})}{\sum_{c=0}^{\mathbb{C}} P(z_{bi} = t, Y_{b}, T_{b} \mid \boldsymbol{x}_{bi}, \boldsymbol{w})}$$
Requires marginalization over all z_{bj} for $j = 1, ..., n_{b}$ and $j \neq i$
 $\rightarrow O(\mathbb{C}^{n_{b}-1})!$

Dynamic Programming for E-step

Forward message passing

 $\alpha_{bi}(l) \triangleq P(N_{bi} = l \mid \boldsymbol{X}_{b}, \boldsymbol{w})$

• Backward message passing

 $\beta_{bi}(l) \triangleq P(Y_b, T_b \mid N_{bi} = l, \boldsymbol{X}_b, \boldsymbol{w})$

Joint probability calculation

 $P_{bic}^{joint}(\boldsymbol{w}) \triangleq P(z_{bi} = c, Y_b, T_b \mid \boldsymbol{x}_{bi}, \boldsymbol{w})$

Posterior probability calculation

$$P_{bic}^{post}(\boldsymbol{w}) = P(z_{bi} = c \mid Y_b, T_b, \boldsymbol{x}_{bi}, \boldsymbol{w})$$
$$= \frac{P(z_{bi} = c, Y_b, T_b \mid \boldsymbol{x}_{bi}, \boldsymbol{w})}{\sum_{t=0}^{\mathbb{C}} P(z_{bi} = t, Y_b, T_b \mid \boldsymbol{x}_{bi}, \boldsymbol{w})}$$

AbSMIL Algorithm

• M-step with stochastic GD

$$\frac{\partial \mathbb{Q}_b(\boldsymbol{w}, \boldsymbol{w}')}{\partial \boldsymbol{w}_c} = \sum_{i=1}^{n_b} \Big(P_{bic}(\boldsymbol{w}) - P_{bic}^{post}(\boldsymbol{w}') \Big) \boldsymbol{x}_{bi} + \lambda_e \sum_{i=1}^{n_b} P_{bic}(\boldsymbol{w}) \Big(\sum_{t=0}^{\mathbb{C}} P_{bit}(\boldsymbol{w}) (\boldsymbol{w}_t - \boldsymbol{w}_c)^T \boldsymbol{x}_{bi} \Big) \boldsymbol{x}_{bi} + \lambda_q \boldsymbol{w}_c$$

Prediction

$$\hat{z}_{bi} = \operatorname{argmax}_{0 \le c \le \mathbb{C}} P(z_{bi} = c \mid \boldsymbol{x}_{bi}, \boldsymbol{w})$$

$$\hat{Y}_b = \operatorname{argmax}_{m \in \{0,1\}} P(Y_b = m, T_b = 1 \mid \boldsymbol{X}_b, \boldsymbol{w})$$

Algorithm 1 Attribute-based Symmetric Multiple Instance Learning (AbSMIL)

Input: Training data {X_b, Y_b}^B_{b=1}, cardinality constraint n_{max}, positive constants λ_q and λ_e, initial weight w⁽⁰⁾
 Output: {w^(k)}

3: k = 0

$$O(n_b(\mathbb{C}d + n_{\max}))$$

- 4: repeat
 5: Select a random bag b
- 6: // E-step:
- 7: Compute prior probability $P_{bic}(w^{(k)})$ using (1)
- 8: Compute prior probability P_{bi}^0, P_{bi}^+ and P_{bi}^- using (9)
- 9: Compute forward message $\alpha_{bi}(l)$ for $i = 1, ..., n_b$ and $l = 0, \pm 1, ..., \pm n_{\max}$ using (10) and (11)
- 10: Compute backward message $\beta_{bi}(l)$ for $i = n_b, \dots, 1$ and $l = 0, \pm 1, \dots, \pm n_{\text{max}}$ using (12) and (13)
- 11: Compute joint probability $P_{bic}^{joint}(\boldsymbol{w}^{(k)})$ for $i = 1, \ldots, n_b$ and $c = 0, 1, \ldots, \mathbb{C}$ using (14) and (15)
- 12: Compute posterior probability $P_{bic}^{post}(w^{(k)})$ for $i = 1, \ldots, n_b$ and $c = 0, 1, \ldots, \mathbb{C}$ using (7)
- 13: // M-step: 14: $\tau = \sqrt{\frac{2(\lambda_e+1)n_b}{\lambda_q} \log(\mathbb{C}+1)}$ 15: Compute $\frac{\partial \mathbb{Q}_b(\boldsymbol{w}, \boldsymbol{w}^{(k)})}{\partial \boldsymbol{w}_c}$ for $c = 0, 1, \dots, \mathbb{C}$ using (8) 16: $\boldsymbol{w}^{(k+1)} = \prod_{\tau} \left(\boldsymbol{w}^{(k)} - \frac{1}{k\lambda_q} \frac{\partial \mathbb{Q}_b(\boldsymbol{w}, \boldsymbol{w}^{(k)})}{\partial \boldsymbol{w}^{(k)}} \right)$ 17: k = k + 1

18: **until** stopping criteria is met

$$\Pi_{ au}(oldsymbol{v}) = \min\Bigl\{1, rac{ au}{\|oldsymbol{v}\|}\Bigr\}oldsymbol{v}$$

Experiments

Runtime Evaluation

d = 30

 $O(n_b(\mathbb{C}d + n_{\max}))$

Real-world Datasets

• Datasets

- Tiger, Fox, and Elephant datasets
 - popularly used in studies of MIL
- Animal Diagnostics Lab datasets:
 - Kidney, Lung, and Spleen
 - histopathology images of mammalian organs
 - 300 WSIs of size 4000x3000 in each dataset
- The Cancer Genome Atlas (TCGA) dataset
 - 48 samples for astrocytoma
 - 48 samples for oligodendroglioma
 - Various sizes and shapes
- Baselines
 - Fully-supervised: DFDL
 - MIL-based: mi-SVM, MIL-Boost, miGraph, MCIL
 - MIML-based: ORLR, MIML-NC

Visualization from Kidney dataset

- Introduced a Symmetric MIL setting where both positive and negative bags contain relevant class-specific instances as well as irrelevant instances.
- Proposed a probabilistic model that takes into account prior information about the sparsity of the relevant instances.
- Developed an efficient inference that is linear in the number of instances and is suitable for online learning scenarios.
- Evaluated our framework on the real-world datasets and obtained competitive results on all datasets and in particular for TCGA where bags contain mainly irrelevant instances

References

- T. H. Vu, H. S. Mousavi, V. Monga, G. Rao, and U. A. Rao *"Histopathological image classification using discriminative featureoriented dictionary learning,"* IEEE Trans. Med. Imag., vol. 35, no. 3, pp. 738–751, 2016.
- Y. Xu, J.-Y. Zhu, E. Chang, and Z. Tu, "Multiple clustered instance learning for histopathology cancer image classification, segmentation and clustering," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. IEEE, 2012, pp. 964–971.

Thank you!